This function will group mean centered the scores at the level 1 and create an aggregated mean score for each group at L2. After that, the group-mean-centered L1 scores and mean L2 scores will be z-scored with respect to the grand mean. Please see `center_mlm` if you want to use the version without the z-scoring.

z_scored_mlm(data, cols, group, keep_original = TRUE)

Arguments

data

A data.frame or a data.frame extension (e.g. a tibble).

cols

Columns that need to be centered. See `dplyr::dplyr_tidy_select` for available options.

group

The grouping/cluster variable.

keep_original

default is `TRUE`. Set to `FALSE` to remove original columns

Value

An object of the same type as .data. The output has the following properties: 1. Columns from .data will be preserved 2. Columns with L1 scores that are group-mean centered then grand-mean z-scored. 3. Columns with L2 aggregated means that are z-scored

Examples

z_scored_mlm(iris,dplyr::ends_with('Length'),group = 'Species')
#> # A tibble: 150 × 9
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#>  1          5.1         3.5          1.4         0.2 setosa 
#>  2          4.9         3            1.4         0.2 setosa 
#>  3          4.7         3.2          1.3         0.2 setosa 
#>  4          4.6         3.1          1.5         0.2 setosa 
#>  5          5           3.6          1.4         0.2 setosa 
#>  6          5.4         3.9          1.7         0.4 setosa 
#>  7          4.6         3.4          1.4         0.3 setosa 
#>  8          5           3.4          1.5         0.2 setosa 
#>  9          4.4         2.9          1.4         0.2 setosa 
#> 10          4.9         3.1          1.5         0.1 setosa 
#> # ℹ 140 more rows
#> # ℹ 4 more variables: Sepal.Length_group_z <dbl>, Petal.Length_group_z <dbl>,
#> #   Sepal.Length_mean_z <dbl>, Petal.Length_mean_z <dbl>