APIM_sem(
data,
mod_type,
predictor_a,
predictor_p,
outcome_a,
outcome_p,
med_a = NULL,
med_p = NULL,
mod_a = NULL,
mod_p = NULL,
bootstrap = NULL,
standardized = FALSE,
return_result = FALSE,
quite = FALSE
)
data frame object
options are "simple" (main effect), "med" (mediation), and "mod" (moderation)
predictor variable name for actor
predictor variable name for partner
dependent variable name for actor
dependent variable name for partner
mediation variable name for actor
mediation variable name for partner
moderation variable name for actor
moderation variable name for partner
number of bootstrapping (e.g., 5000). Default is not using bootstrap
standardized coefficient
return lavaan::parameterestimates()
. Default is FALSE
suppress printing output. Default is FALSE
data.frame from lavaan::parameterestimates()
Actor-partner interdependence model using SEM approach (with lavaan). Indistinguishable dyads only. Results should be the same as those from Kenny (2015a, 2015b).
Kenny, D. A. (2015, October). An interactive tool for the estimation and testing mediation in the Actor-Partner Interdependence Model using structural equation modeling. Computer software. Available from https://davidakenny.shinyapps.io/APIMeM/. Kenny, D. A. (2015, October). An interactive tool for the estimation and testing moderation in the Actor-Partner Interdependence Model using structural equation modeling. Computer software. Available from https://davidakenny.shinyapps.io/APIMoM/. Stas, L, Kenny, D. A., Mayer, A., & Loeys, T. (2018). Giving Dyadic Data Analysis Away: A User-Friendly App for Actor-Partner Interdependence Models. Personal Relationships, 25 (1), 103-119. https://doi.org/10.1111/pere.12230.
APIM_sem(data = acitelli,
predictor_a = 'Tension_A',
predictor_p = 'Tension_P',
outcome_a = 'Satisfaction_A',
outcome_p = 'Satisfaction_P',
mod_type = 'simple')
#> lavaan 0.6-18 ended normally after 25 iterations
#>
#> Estimator ML
#> Optimization method NLMINB
#> Number of model parameters 14
#> Number of equality constraints 6
#>
#> Number of observations 296
#> Number of missing patterns 1
#>
#> Model Test User Model:
#>
#> Test statistic 0.000
#> Degrees of freedom 6
#> P-value (Chi-square) 1.000
#>
#> Model Test Baseline Model:
#>
#> Test statistic 406.856
#> Degrees of freedom 6
#> P-value 0.000
#>
#> User Model versus Baseline Model:
#>
#> Comparative Fit Index (CFI) 1.000
#> Tucker-Lewis Index (TLI) 1.015
#>
#> Robust Comparative Fit Index (CFI) 1.000
#> Robust Tucker-Lewis Index (TLI) 1.015
#>
#> Loglikelihood and Information Criteria:
#>
#> Loglikelihood user model (H0) -837.957
#> Loglikelihood unrestricted model (H1) -837.957
#>
#> Akaike (AIC) 1691.915
#> Bayesian (BIC) 1721.438
#> Sample-size adjusted Bayesian (SABIC) 1696.067
#>
#> Root Mean Square Error of Approximation:
#>
#> RMSEA 0.000
#> 90 Percent confidence interval - lower 0.000
#> 90 Percent confidence interval - upper 0.000
#> P-value H_0: RMSEA <= 0.050 1.000
#> P-value H_0: RMSEA >= 0.080 0.000
#>
#> Robust RMSEA 0.000
#> 90 Percent confidence interval - lower 0.000
#> 90 Percent confidence interval - upper 0.000
#> P-value H_0: Robust RMSEA <= 0.050 1.000
#> P-value H_0: Robust RMSEA >= 0.080 0.000
#>
#> Standardized Root Mean Square Residual:
#>
#> SRMR 0.000
#>
#> Parameter Estimates:
#>
#> Standard errors Standard
#> Information Observed
#> Observed information based on Hessian
#>
#> Regressions:
#> Estimate Std.Err z-value P(>|z|)
#> y_a ~
#> x_a (a) -0.375 0.022 -16.824 0.000
#> x_p (p) -0.177 0.022 -7.959 0.000
#> y_p ~
#> x_p (a) -0.375 0.022 -16.824 0.000
#> x_a (p) -0.177 0.022 -7.959 0.000
#>
#> Covariances:
#> Estimate Std.Err z-value P(>|z|)
#> x_a ~~
#> x_p (cx) 0.149 0.029 5.190 0.000
#> .y_a ~~
#> .y_p (cy) 0.063 0.009 6.872 0.000
#>
#> Intercepts:
#> Estimate Std.Err z-value P(>|z|)
#> x_a (mx) 2.431 0.032 75.134 0.000
#> x_p (mx) 2.431 0.032 75.134 0.000
#> .y_a (my) 4.948 0.084 58.968 0.000
#> .y_p (my) 4.948 0.084 58.968 0.000
#>
#> Variances:
#> Estimate Std.Err z-value P(>|z|)
#> x_a (vx) 0.471 0.029 16.403 0.000
#> x_p (vx) 0.471 0.029 16.403 0.000
#> .y_a (ve) 0.145 0.009 15.773 0.000
#> .y_p (ve) 0.145 0.009 15.773 0.000
#>
#> Defined Parameters:
#> Estimate Std.Err z-value P(>|z|)
#> k 0.473 0.062 7.613 0.000
#> sum -0.276 0.017 -16.425 0.000
#> cont -0.198 0.029 -6.754 0.000
#>