R/apim_table.R
APIM_table.Rd
APIM_table(
data,
predictor_a,
predictor_p,
outcome_a,
outcome_p,
mod_a = NULL,
mod_p = NULL,
mod_type = "mod",
return_result = FALSE
)
data frame object
predictor variable name for actor
predictor variable name for partner
dependent variable name for actor
dependent variable name for partner
moderation variable name for actor. Support dplyr::select()
syntax.
moderation variable name for partner. Support dplyr::select()
syntax.
only 'mod' is supported for now
return lavaan::parameterestimates()
. Default is FALSE
data.frame of the APIM table
APIM_table(data = acitelli,
predictor_a = 'Tension_A',
predictor_p = 'Tension_P',
outcome_a = 'Satisfaction_A',
outcome_p = 'Satisfaction_P',
mod_a = c('SelfPos_A','OtherPos_A','SimHob_A'),
mod_p = c('SelfPos_P','OtherPos_P','SimHob_P'))
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> Moderator Predictor Outcome iAA iPP iAP iPA aa ab pa pb
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> SelfPos_A Tension_A Satisfaction_A 0.091 0.114 * 0.021 0.162 ** -0.368 *** 0.151 *** -0.167 *** -0.020
#> OtherPos_A Tension_A Satisfaction_A 0.185 *** 0.032 0.194 *** 0.133 ** -0.277 *** 0.236 *** -0.098 *** 0.166 ***
#> SimHob_A Tension_A Satisfaction_A 0.102 ** -0.032 0.122 *** -0.029 -0.335 *** 0.144 *** -0.162 *** 0.070 **
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> You can drag and resize the R console to view the entire table
#> Lab
#> iAA: Y_a ~ X_a * M_a and Y_p ~ X_p * M_p
#> iPP: Y_a ~ X_p * M_p and Y_p ~ X_a * M_a
#> iAP: Y_a ~ X_a * M_p and Y_p ~ X_p * M_a
#> iPA: Y_a ~ X_p * M_a and Y_p ~ X_a * M_p
#> aa: Y_a ~ X_a and Y_p ~ X_p
#> ab: Y_a ~ M_a and Y_p ~ M_p
#> pa: Y_a ~ X_p and Y_p ~ X_a
#> pb: Y_a ~ M_p and Y_p ~ M_a