R/apim_table.R
APIM_table.RdAPIM_table(
data,
predictor_a,
predictor_p,
outcome_a,
outcome_p,
mod_a = NULL,
mod_p = NULL,
mod_type = "mod",
return_result = FALSE
)data frame object
predictor variable name for actor
predictor variable name for partner
dependent variable name for actor
dependent variable name for partner
moderation variable name for actor. Support dplyr::select() syntax.
moderation variable name for partner. Support dplyr::select() syntax.
only 'mod' is supported for now
return lavaan::parameterestimates(). Default is FALSE
data.frame of the APIM table
APIM_table(data = acitelli,
predictor_a = 'Tension_A',
predictor_p = 'Tension_P',
outcome_a = 'Satisfaction_A',
outcome_p = 'Satisfaction_P',
mod_a = c('SelfPos_A','OtherPos_A','SimHob_A'),
mod_p = c('SelfPos_P','OtherPos_P','SimHob_P'))
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> Moderator Predictor Outcome iAA iPP iAP iPA aa ab pa pb
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> SelfPos_A Tension_A Satisfaction_A 0.091 0.114 * 0.021 0.162 ** -0.368 *** 0.151 *** -0.167 *** -0.020
#> OtherPos_A Tension_A Satisfaction_A 0.185 *** 0.032 0.194 *** 0.133 ** -0.277 *** 0.236 *** -0.098 *** 0.166 ***
#> SimHob_A Tension_A Satisfaction_A 0.102 ** -0.032 0.122 *** -0.029 -0.335 *** 0.144 *** -0.162 *** 0.070 **
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> You can drag and resize the R console to view the entire table
#> Lab
#> iAA: Y_a ~ X_a * M_a and Y_p ~ X_p * M_p
#> iPP: Y_a ~ X_p * M_p and Y_p ~ X_a * M_a
#> iAP: Y_a ~ X_a * M_p and Y_p ~ X_p * M_a
#> iPA: Y_a ~ X_p * M_a and Y_p ~ X_a * M_p
#> aa: Y_a ~ X_a and Y_p ~ X_p
#> ab: Y_a ~ M_a and Y_p ~ M_p
#> pa: Y_a ~ X_p and Y_p ~ X_a
#> pb: Y_a ~ M_p and Y_p ~ M_a