anova_plot(model, predictor = NULL, graph_label_name = NULL, y_lim = NULL)
fitted model (usually lm
or aov
object). Variables must be converted to correct data type before fitting the model. Specifically, continuous variables must be converted to type numeric
and categorical variables to type factor
.
predictor variable. Must specified for non-interaction plot and must not specify for interaction plot.
vector or function. Vector should be passed in the form of c(response_var, predict_var1, predict_var2, ...)
. Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function)
the plot's upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)
a ggplot
object
# Main effect plot with 1 categorical variable
fit_1 = lavaan::HolzingerSwineford1939 %>%
dplyr::mutate(school = as.factor(school)) %>%
lm(data = ., grade ~ school)
anova_plot(fit_1,predictor = school)
#> Loading required namespace: scales
#> Joining with `by = join_by(school)`
# Interaction effect plot with 2 categorical variables
fit_2 = lavaan::HolzingerSwineford1939 %>%
dplyr::mutate(dplyr::across(c(school,sex),as.factor)) %>%
lm(data = ., grade ~ school*sex)
anova_plot(fit_2)
#> Joining with `by = join_by(school, sex)`
# Interaction effect plot with 1 categorical variable and 1 continuous variable
fit_3 = lavaan::HolzingerSwineford1939 %>%
dplyr::mutate(school = as.factor(school)) %>%
dplyr::mutate(ageyr = as.numeric(ageyr)) %>%
lm(data = ., grade ~ ageyr*school)
anova_plot(fit_3)