First, it will determine whether the data is uni-dimensional or multi-dimensional using parameters::n_factors()
. If the data is uni-dimensional, then it will print a summary
consists of alpha, G6, single-factor CFA, and descriptive statistics result. If it is multi-dimensional, it will print a summary consist of alpha, G6, omega result. You can
bypass this by specifying the dimensionality argument.
reliability_summary(
data,
cols,
dimensionality = NULL,
digits = 3,
descriptive_table = TRUE,
quite = FALSE,
streamline = FALSE,
return_result = FALSE
)
data.frame
items for reliability analysis. Support dplyr::select()
syntax.
Specify the dimensionality. Either uni
(uni-dimensionality) or multi
(multi-dimensionality). Default is NULL
that determines the dimensionality using EFA.
number of digits to round to
Get descriptive statistics. Default is TRUE
suppress printing output
print streamlined output
If it is set to TRUE
(default is FALSE
), it will return psych::alpha
for uni-dimensional scale, and psych::omega
for multidimensional scale.
a psych::alpha
object for unidimensional scale, and a psych::omega
object for multidimensional scale.
fit <- reliability_summary(data = lavaan::HolzingerSwineford1939, cols = x1:x3)
#> Model Summary
#> Model Type = Reliability Analysis
#> Dimensionality = uni-dimensionality
#>
#> Composite Reliability Measures
#> ────────────────────────────
#> Alpha Alpha.Std G6 (smc)
#> ────────────────────────────
#> 0.626 0.627 0.535
#> ────────────────────────────
#>
#> Item Reliability (item dropped)
#> ─────────────────────────────────
#> Var Alpha Alpha.Std G6 (smc)
#> ─────────────────────────────────
#> x1 0.507 0.507 0.340
#> x2 0.612 0.612 0.441
#> x3 0.458 0.458 0.297
#> ─────────────────────────────────
#>
#> CFA Model:
#> Fit measure is not printed due to factor <= 3
#> Factor Loadings
#> ───────────────────────────────────────────────────────────────────────────────
#> Latent.Factor Observed.Var Std.Est SE Z P 95% CI
#> ───────────────────────────────────────────────────────────────────────────────
#> DV1 x1 0.621 0.067 9.223 0.000 *** [0.489, 0.753]
#> x2 0.479 0.063 7.645 0.000 *** [0.356, 0.602]
#> x3 0.710 0.071 9.936 0.000 *** [0.570, 0.850]
#> ───────────────────────────────────────────────────────────────────────────────
#> *** p < 0.001, ** p < 0.01, * p < 0.05, + p < 0.1
#>
#> Descriptive Statistics Table:
#> Model Summary
#> Model Type = Correlation
#> Model Method = pearson
#> Adjustment Method = none
#>
#> ───────────────────────────
#> Var x1 x2
#> ───────────────────────────
#> x1
#> x2 0.297 ***
#> x3 0.441 *** 0.340 ***
#> ───────────────────────────
#> Note: * p < 0.05, ** p < 0.01, *** p < 0.001
#>
#> ─────────────────────────────────────────
#> Var mean sd x1 x2
#> ─────────────────────────────────────────
#> x1 4.936 1.167
#> x2 6.088 1.177 0.297 ***
#> x3 2.250 1.131 0.441 *** 0.340 ***
#> ─────────────────────────────────────────
#>
fit <- reliability_summary(data = lavaan::HolzingerSwineford1939, cols = x1:x9)
#> Model Summary
#> Model Type = Reliability Analysis
#> Dimensionality = multi-dimensionality
#>
#> Composite Reliability Measures
#> ──────────────────────────────────────────────────────────
#> Alpha Alpha.Std G.6 Omega.Hierarchical Omega.Total
#> ──────────────────────────────────────────────────────────
#> 0.76 0.76 0.808 0.449 0.851
#> ──────────────────────────────────────────────────────────
#>
#> Item Reliability (item dropped)
#> ─────────────────────────────────
#> Var Alpha Alpha.Std G6 (smc)
#> ─────────────────────────────────
#> x1 0.725 0.725 0.780
#> x2 0.764 0.763 0.811
#> x3 0.749 0.748 0.796
#> x4 0.715 0.719 0.761
#> x5 0.724 0.726 0.764
#> x6 0.714 0.717 0.764
#> x7 0.766 0.765 0.800
#> x8 0.748 0.747 0.789
#> x9 0.731 0.728 0.782
#> ─────────────────────────────────
#>
#> Descriptive Statistics Table:
#> Model Summary
#> Model Type = Correlation
#> Model Method = pearson
#> Adjustment Method = none
#>
#> ─────────────────────────────────────────────────────────────────────────────────────────────────────
#> Var x1 x2 x3 x4 x5 x6 x7 x8
#> ─────────────────────────────────────────────────────────────────────────────────────────────────────
#> x1
#> x2 0.297 ***
#> x3 0.441 *** 0.340 ***
#> x4 0.373 *** 0.153 ** 0.159 **
#> x5 0.293 *** 0.139 * 0.077 0.733 ***
#> x6 0.357 *** 0.193 *** 0.198 *** 0.704 *** 0.720 ***
#> x7 0.067 -0.076 0.072 0.174 ** 0.102 0.121 *
#> x8 0.224 *** 0.092 0.186 ** 0.107 0.139 * 0.150 ** 0.487 ***
#> x9 0.390 *** 0.206 *** 0.329 *** 0.208 *** 0.227 *** 0.214 *** 0.341 *** 0.449 ***
#> ─────────────────────────────────────────────────────────────────────────────────────────────────────
#> You can drag and resize the R console to view the entire table
#> Note: * p < 0.05, ** p < 0.01, *** p < 0.001
#>
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> Var mean sd x1 x2 x3 x4 x5 x6 x7 x8
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> x1 4.936 1.167
#> x2 6.088 1.177 0.297 ***
#> x3 2.250 1.131 0.441 *** 0.340 ***
#> x4 3.061 1.164 0.373 *** 0.153 ** 0.159 **
#> x5 4.341 1.290 0.293 *** 0.139 * 0.077 0.733 ***
#> x6 2.186 1.096 0.357 *** 0.193 *** 0.198 *** 0.704 *** 0.720 ***
#> x7 4.186 1.090 0.067 -0.076 0.072 0.174 ** 0.102 0.121 *
#> x8 5.527 1.013 0.224 *** 0.092 0.186 ** 0.107 0.139 * 0.150 ** 0.487 ***
#> x9 5.374 1.009 0.390 *** 0.206 *** 0.329 *** 0.208 *** 0.227 *** 0.214 *** 0.341 *** 0.449 ***
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> You can drag and resize the R console to view the entire table
#>